Rectángulo Áureo.
El rectángulo dorado (denominado también rectángulo áureo) es un rectangulo que posee una proporcionalidad entre sus lados igual a la razón áurea Es decir que es aquél rectángulo que al substraer la imagen de un cuadrado igual .al de su lado menor, el rectángulo resultante es igualmente un rectángulo dorado. A partir de este rectángulo se puede obtener la espiral dorada, que es una espiral logarítmica.
Un rectángulo cuyos lados están en una proporción igual a la razón áurea es llamado un rectángulo áureo. Este es un rectángulo muy especial como veremos. Los griegos lo consideraban de particular belleza y lo utilizaron asidua mente en su arquitectura. Al parecer a la mayoría de las personas también les parece más agradable a la vista un rectángulo con esas proporciones entre sus lados, inconscientemente se diseñan infinidad de cosas que resultan tener la forma de un rectángulo áureo.
El rectángulo áureo tiene una propiedad muy interesante. A partir de él podemos obtener una infinidad de nuevos rectángulos áureos. El proceso es iterativo (recursivo diría alguien dedicado a la computación) y consiste en quitar a cada rectángulo áureo un cuadrado, la superficie que queda luego de hacer esto es un nuevo rectángulo áureo. Este proceso se ilustra en la animación que aparece a continuación.
Los números de Fibonacci y la proporción áurea han sido motivo de todo tipo de especulaciones sobre su supuesta presencia en distintas manifestaciones de la naturaleza y en otras hechas por el hombre. Así se suele afirmar que se puede encontrar la proporción dorada en lugares tales como el número de pétalos de las flores y en las hojas de las plantas, en los caparazones de moluscos, en la forma de ciertas galaxias, en obras de arte e inclusive en el tamaño de las tarjetas de crédito. Veamos a continuación qué hay de cierto y qué hay de mentira en tales afirmaciones la secuencia de Fibonacci Leonardo de Pisa (1170-1250), más conocido como Fibonacci, nació en Pisa, Italia e hizo muchas contribuciones a las matemáticas. Es conocido por el público en general por la de números que lleva su nombre: {0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, ...}.
Esta secuencia se construye mediante la elección de los dos primeros números (las "semillas" de la secuencia) y el número siguiente se obtiene como la suma de los dos números anteriores. Esta simple regla genera una secuencia de números que tienen muchas propiedades sorprendentes, de las cuales citaremos algunas:
· Tome tres números adyacentes de la secuencia. Eleve al cuadrado el número del medio. Multiplique los otros entre sí. La diferencia entre estos dos resultados es siempre 1. Por ejemplo, si tomamos {3, 5, 8} vemos que 5²=25 y que 3·8=24. La diferencia resulta ser 1.
· Tome cuatro números adyacentes de la secuencia. Multiplique los dos de los extremos. Multiplique los que hay dentro. El primer producto será una unidad mayor o una unidad menor que el segundo. Por ejemplo, si tomamos {21, 34, 55, 89} vemos que 21·89=1869, mientras que 34·55=1870.
· La suma de los diez números adyacentes es igual a 11 veces el séptimo de los diez. Por ejemplo, si tomamos {1, 2, 3, 5, 8, 13, 21, 34, 55, 89} vemos que la suma resulta 231 que es 11 el séptimo número de nuestra sucesión (el número 21). Esto es sólo un ejemplo de muchas secuencias con las relaciones recursivas simples. La secuencia Fibonacci obedece a la relación recursiva P(n)=P(n-1)+P(n-2). En tal secuencia, los primeros dos valores deben ser arbitrariamente elegidos. Se les llama las "semillas" de la secuencia. Cuando se eligen al 0 y al 1 como semillas, o 1 y 1, o 1 y 2, la secuencia se denomina la secuencia Fibonacci. La secuencia formada a partir de la relación entre los números adyacentes de la secuencia de Fibonacci converge a un valor constante de 1,6180339887..., llamado "phi", cuyo símbolo es Φ. Una característica notable de esta secuencia es que la inversa de Φ es 0,6180339887... que es igual a Φ-1. Dicho de otra manera, Φ = 1 + 1/Φ. Esto es cierto, sean cuales sean los dos números enteros que se usen como semillas para inicializar la secuencia, es decir, este resultado sólo depende de la relación recursiva que utiliza y no de la elección de las semillas. Por lo tanto hay muchas secuencias diferentes que convergen a Φ . Se les llama "secuencias generalizadas de Fibonacci". A la relación Φ=1,6180339887... se llama "proporción áurea". Los rectángulos cuyos lados guardan esta relación se denominan "rectángulos de oro", y ya eran conocidos por los antiguos griegos. Estos rectángulos son la base para generar una curva conocida como la "espiral dorada", una espiral logarítmica que se ajusta bastante bien a otras espirales que se encuentran en la naturaleza. Este hecho es la fuente de gran parte del interés popular y mística en este asunto matemático. Es fácil inventar otras relaciones de recursividad interesantes. Algunas han sido lo suficientemente interesantes como para que lleven el nombre de sus autores. La sucesión de Lucas es bien conocida: {1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, ...}. Tiene por semillas a 1 y 3, y la misma relación de recursión de la serie de Fibonacci (algunos libros inician esta serie con las semillas 2 y 1, y el resto de la serie sigue de la misma manera). La relación entre números adyacentes de la sucesión resulta ser Φ para grandes valores. ¿Y qué hay de una relación recursiva diferente? Por ejemplo: P(n)=P(n-2)+P(n-3). Con las tres semillas 0, 1, 1 se obtiene la sucesión {0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, ...}. Las semillas, junto con la relación de recursión, definen unívocamente a la secuencia. La relación entre dos términos sucesivos P(n+1)/P(n) converge a 1,3247295... cuyo recíproco es 0,7545776665... (tenga en cuenta que su recíproco no es una unidad menor que él mismo, al contrario de lo que podría haber esperado). Por lo general, para todas estas sucesiones, los primeros valores de las relaciones entre dos números sucesivos no parecen tener un patrón consistente, pero para números grandes convergen a valores que son casi constantes, y después de n=30, la proporción alcanza un valor estable con alrededor de 10 decimales. Los sinsentidos sobre Fibonacci Una búsqueda en internet, o en su biblioteca local lo convencerá de que la serie de Fibonacci ha atraído a más de un lunático que busca el misticismo en los números. Se puede encontrar con afirmaciones fantásticas como estas:
· Los "rectángulos de oro" son los "más bello" rectángulos, y los utilizaron deliberadamente los artistas en sus pinturas. (Se podría pensar que siempre utilizaban marcos rectangulares áureos, pero no lo hacían).
· Los modelos basados en los números de Fibonacci, el número áureo y el rectángulo de oro son los más agradables a la percepción humana.
· Mozart utilizó Φ en la composición de su música. (A él le gustaban los juegos de números, pero no hay buena evidencia de que alguna vez utilizara deliberadamente a Φ en una composición).
· La secuencia de Fibonacci se ve en la naturaleza, en la disposición de las hojas sobre el tallo de las plantas, en el patrón de las semillas de girasol, en las espirales de los caracoles, en el número de pétalos de las flores, en los períodos de los planetas del sistema solar, e incluso en los ciclos del mercado de valores. ¡Tan omnipresente es la secuencia en la naturaleza (de acuerdo con esta gente) que uno empieza a sospechar que la serie tiene la notable capacidad de "ajustarse" a casi cualquier cosa!
· Los procesos de la naturaleza son "gobernados" por el número áureo. Inclusive, algunas fuentes dicen que los procesos naturales se "explican" por esta relación. Por supuesto, gran parte de esto es completamente absurdo. Las matemáticas no "explican" lo que sea en la naturaleza, sino que usa modelos matemáticos muy potentes para describir los patrones y las leyes de la naturaleza. Creo que es seguro decir que la secuencia de Fibonacci, la proporción dorada, y el rectángulo de oro, jamás han conducido de manera directa al descubrimiento de una ley fundamental de la naturaleza. Cuando vemos un patrón numérico o geométrico ordenado en la naturaleza, nos damos cuenta que hay que cavar más profundo para encontrar la razón subyacente de por qué estos patrones emergen.
La antiguedad del rectangulo aureo.
El número áureo es la relación o proporción que guardan entre sí dos segmentos de rectas. Fue descubierto en la antigüedad, y puede encontrarse no solo en figuras geométricas, sino también en la naturaleza. A menudo se le atribuye un carácter estético especial a los objetos que contienen este número, y es posible encontrar esta relación en diversas obras de la arquitectura u el arte. Por ejemplo, el Hombre de Vitruvio, dibujado por Leonardo Da Vinci y considerado un ideal de belleza, está proporcionado según el número áureo. ¿Cuál es el origen y la importancia de este valor matemático? Hay números que han intrigado a la humanidad desde hace siglos. Valores como PI -la razón matemática entre la longitud de una circunferencia y su diámetro- o e -la base de los logaritmos naturales-, suelen aparecer como resultado de las más dispares ecuaciones o en las proporciones de diferentes objetos naturales. El número áureo -a menudo llamado número dorado, razón áurea, razón dorada, media áurea, proporción áurea o divina proporción- también posee muchas propiedades interesantes y aparece, escondido y enigmático, en los sitios más dispares. El primero en hacer un estudio formal sobre el número áureo fue Euclides, unos tres siglos antes de Cristo, en su obra Los Elementos. Euclides definió su valor diciendo que "una línea recta está dividida en el extremo y su proporcional cuando la línea entera es al segmento mayor como el mayor es al menor." En otras palabras, dos números positivos a y b están en razón áurea si y sólo si (a+b) / a = a / b. El valor de esta relación es un número que, como también demostró Euclides, no puede ser descrito como la razón de dos números enteros (es decir, es irracional y posee infinitos decimales) cuyo su valor aproximado es 1,6180339887498... Casi 2000 años más tarde, en 1525, Alberto Durero publicó su “Instrucción sobre la medida con regla y compás de figuras planas y sólidas”, en la que describe cómo trazar con regla y compás la espiral basada en la sección áurea, la misma que hoy conocemos como “espiral de Durero”. Unas décadas después, el astrónomo Johannes Kepler desarrolló su modelo del Sistema Solar, explicado en Mysterium Cosmographicum (El Misterio Cósmico). Para tener una idea de la importancia que tenía este número para Kepler, basta con citar un pasaje de esa obra: “La geometría tiene dos grandes tesoros: uno es el teorema de Pitágoras; el otro, la división de una línea entre el extremo y su proporcional. El primero lo podemos comparar a una medida de oro; el segundo lo debemos denominar una joya preciosa”. Es posible que el primero en utilizar el adjetivo áureo, dorado, o de oro, para referirse a este número haya sido el matemático alemán Martin Ohm (hermano del físico Georg Simon Ohm), en 1835. En efecto, en la segunda edición de 1835 de su libro “Die Reine Elementar Matematik” (Las Matemáticas Puras Elementales), Ohm escribe en una nota al pie: “Uno también acostumbra llamar a esta división de una línea arbitraria en dos partes como éstas la sección dorada." El hecho de que no se incluyera esta anotación en su primera edición es un indicio firme de que el término pudo ganar popularidad aproximadamente en el año 1830.
La actualidad del rectangulo aureo.
La arquitectura contemporánea sigue utilizando la proporción aurea en diferentes estructuras, el concepto de sección áurea fue reivindicado durante el periodo de la arquitectura moderna por Le Corbusier quien en los años 40s desarrolló un sistema de proporciones llamado Modulor en el que la proporción de alturas estaba basada en la proporción aurea, pero no solo Le Corbusier utilizó ampliamente el concepto, de igual forma lo hizo Mies Van der Rohe, de esta forma la proporción aurea mantiene su vigencia hasta nuestros días. En la arquitectura la sección aurea encuentra variadas e imaginativas aplicaciones, veamos el caso del círculo áureo, círculo dividido en dos secciones por dos radios, en el cual el cociente de la división del ángulo mayor entre el menor es igual al número de oro, Phi, la arquitectura aplica esto en la pendiente de lozas a dos aguas, en la angulación de muros y en juntas de elementos estructurales y también decorativos. La proporción aurea en la actualidad es utilizada en las fachadas para la asignación de tamaños proporcionales – sección del rectángulo áureo y gradación - en ventanas, puertas, columnas, lozas, arcos, trabes, elementos decorativos, de tal forma que se logre un conjunto visualmente atractivo y se mantenga la proporcionalidad con respecto a la fachada total. La sección áurea también es aplicada en la arquitectura contemporánea para el diseño de plantas, de tal forma que se logren ambientes armónicos y proporcionales al tamaño total de la planta, de esta forma se aplican separaciones y tamaños proporcionales para estancias, jardines, escaleras, mediante las secciones y gradación de un rectángulo áureo. Un ejemplo del uso de la sección áurea en la arquitectura contemporánea es La Casa G (G House) en Ramat Hasharon, Israel, del grupo Paz Gersh Architects, un proyecto del año 2011 en el que el diseño de las fachadas se ha planteado a través del análisis preciso de proporciones utilizando la proporción áurea, el concepto se puede apreciar a lo largo de toda la casa.
Comentarios
Publicar un comentario